Interactive comment on “Reliability of water distribution networks due to pumps failure: comparison of VSP and SSP application” by N. Mehzad et al.

N. Mehzad et al.
nazlimehzad@ut.ac.ir

Received and published: 14 November 2012

Responses of the authors to the reviewers’ comments on the paper entitled “Reliability of water distribution networks due to pumps failure: comparison of VSP and SSP application” By N. Mehzad, M. Tabesh, S. S. Hashemi, and B. Ataee Kia

Referee #1 General comment The paper deals with the evaluation of the reliability of a water distribution system served by a pumping station and in particular with the increase of reliability deriving from the use of variable speed pumps compared with single speed pumps. The topic is of interest for the readership of Drinking Water Engineering and Science. The paper is clearly organized, but C1: in many points the English language is poor, or even wrong in some cases, and I recommend that it is checked by a mother tongue. A1: First of all, many thanks for your helpful comments. We have tried to consider all the technical and language comments in the revised manuscript.

About the scientific contents of the manuscript, C2: the presented application seems just an exercise, and A2: In this paper, to calculate the reliability of water distribution networks, a new concept is proposed based on the reliability of pumping stations which is applied on the real WDN of Vardavard City in Iran. The optimization programming scripts are available and our new and developed methodology is stated in our paper. Therefore it can be stated that this paper is more than an exercise. Because of this, the other referees believe new contributions of this paper. C3: the validity of the main conclusion drawn by the authors in the revised manuscript (the use of VSP increases the reliability of the system, which is probably obvious regardless of this manuscript) is not supported by the presented results and their discussion: in particular. A3: The main conclusion is more discussed and also better stated. (Line 11, Page 361). C4: it is plain that the result strongly depends upon: (i) the shape of the relationship expressing the reliability at a single demand node; (ii) the probability of failure of the pumps. A4: The proposed reliability relationships are calculated at each node and then are computed for the entire network using weighted mean of nodal values. Therefore the proposed formulations are a general statement. On the other hand for the probability of failure of pumps please see our response for comment #20. C5: Both these quantities have been assigned without any explanation. In particular, for the first, C6: the three checked shapes seem arbitrary; for the second, C7: no information is provided about how the probabilities of failure have been evaluated (I have doubts about such values, as explained in the following “detailed comments” section). A5, A6, A7: In order to explain the comment about the assigned quantification and equations, I want to add the following statements: This paper is in continuation of the research which was conducted in 2011 and published in COWI proceeding. In that research, the WDN was analyzed based on the first nodal pressure equation. In this paper, to reach the closest solution to the real condition of a WDN, the second nodal pressure equation is
proposed to consider the maximum allowable nodal pressure. The difference between
equation (1) and equation (2) is more visible in low daily consumption hours. In the next
step, to promote the reliability calculation, the third nodal pressure equation, which is
derived from Tabesh & Zia (2003), has been considered. The results of the three con-
sidered equations are compared. More information is provided in the comment #20
about the probability calculations.

C8: I also have some minor concern about the use of the word “fuzzy” for the re-
lationships expressing the reliability at demand nodes: usually the recourse to fuzzy
variables is done when the vagueness of truth is such that a certain degree of truth can
be found even in opposite statements, and the membership functions are introduced
just to quantify the degree of truth of opposite statements. In this case, I understand
that the proposed relationships are just a way to quantify the degree of fulfillment of
design requirements at nodes. In conclusion, I think that the manuscript cannot be ac-
cepted in its present form and that major revisions are needed. A8: According to your
advice, fuzzy equation is changed to nodal pressure equation. In particular, C9: the
choice of the expressions (1), (2) and (3) (especially the last two) must be discussed
and motivated. A9: It is discussed in A5, A6, A7. C10: as well as the evaluation of the
probabilities of pump failure. A10: More information is provided in comment #20.

Detailed comments C11: Pag. 355, lines 17-20: I suggest to discuss here the limita-
tions of a Demand Driven approach rather than at pag. 358, lines 27-29; A11: This
comment is applied in the new version. C12: Eq. (1) and pag. 356, line 3: clarify the
meaning of the pressure head HMIN; A12: In the line 3, page 356, HMIN is explained.
C13: Pag. 356, line 12, Eq. (3) and fig. 2: what are H1, H2 and H3? If they are
just shape parameters of the reliability expression, as I guess, their choice should be
discussed; A13: In the line 12, page 356, these parameters are assigned to explain
the better behavior of the curve.

C14: Pag. 356 and figures 1 and 2: the choice of the expressions of the reliability at
nodes (especially eq. (3)) should be discussed and clarified; A14: It is discussed in
C5, C6, C7.

C15: Pag. 357, eq. (4) and lines 6-7: I really don’t understand how the use of demands
to weigh the reliability at nodes could “increase the accuracy of the reliability calcula-
tion” (it makes no sense); A15: In this paper, the equations are weighted, because the
nodes with higher demand are more important and all of the nodes should not have
the same degree of importance.

C16: Pag. 357, lines 14-15: the Authors should provide more information about the
analyses carried out to evaluate rsc; A16: It is discussed in comment #20.

C17: Fig. 3 and pag. 358, lines 3-4: counting the nodes (they result 78, as stated two
lines above), it seems that the entire network is depicted, and not only a part; A17: In
line 1, page 358, it is stated that the figure and the information belongs to the south
part of the system.

C18: Pag. 358, lines 11-12: it should be made clearer that the obtained result have
not general validity, but refer only to the considered network; A18: In line 5, page
361, it is stated in C3 that for each special network, this can be different. However, in
general, Variable Speed Pump (VSP), leads to a higher reliability of the system than
using Single Speed Pump (SSP) based on the reliability calculation.

C19: Table 1 and pag. 358 lines 13-14: the table provides the pumping schedules,
and not the “demand levels”, as stated. However, it would be worth to add a table or a
figure with the temporal demand pattern; A19: In the text, this comment is applied by
changing "various demand levels" to "pumping schedules" and "pumping scheduling" to
"pumping station".

C20: Pag. 359, lines 16-18: how the probabilities were evaluated? The assumed val-
ues seem questionable, because, if the probability of failure of a single pump is 0.85
(extremely high), it’s difficult to understand how the probability of two failures is 0.1. If
the events were stochastically independent, the probability of two failures (the pumps have the same characteristics, as stated at pag. 358, line 3) should be $0.85 \times 0.85 = 0.72$. If the failure of pumps can be caused, at least in some cases, by the same reasons, the probability of contemporary failure is even higher than the product of the probabilities of single failures. This point is crucial for the entire study, because the obtained results strongly depend on the values assumed for r_i. Thus, the Authors should thoroughly discuss it; A20: Many thanks for your comments. According to your comments, the probabilities of different scenarios are reconsidered. The failure probability of one pump is considered less than 0.85 and equal to 0.1. Accordingly, the failure probability of two, three, and four pumps are equal to $0.1 \times 0.1 = 0.01$, $0.1 \times 0.1 \times 0.1 = 0.001$, and $0.1 \times 0.1 \times 0.1 \times 0.1 = 0.0001$ consequently. Figures and tables are revised. It is important to mention that despite these changes, the conclusion stayed the same and intact. Due to the unavailability of the data over the pumps’ failure, the probability of pumps’ failure is with fictive values and based on the suggestion of the experts. The next step of this research will be related to obtain the realistic probability for pump failures which will be reported in our next papers.

C21: Pag. 360, lines 16-19: equations (1), (2) and (3) should be discussed in a less simplistic way; A21: This comment is applied in the new version and discussed in detail.

C22: Pag. 361, lines 5-11: these conclusions strongly depend on the chosen equations expressing the reliability at single demand nodes. This point should be discussed before drawing conclusions; A22: It is discussed in page 361, line 5 before drawing conclusions.

C23: Pag. 361, lines 12-17: the use of pumps at speeds higher than the normal has not been investigated here; however, the conclusion is rather obvious. A23: The use of pumps with speed higher than the normal is proposed as a practical solution which should be investigated in further research.

Typing mistakes and English language errors I cannot assure that the following list is complete, so I repeat my recommendation to carefully check the English language, possibly with the help of a mother tongue. C24: Pag. 352, lines 18-20: check English language; A24: Pag. 352, lines 18-20: is checked and deleted.

C26: Pag. 353, lines 19-20: check English language; A26: Pag. 353, lines 19-20: is checked and changed to: “The study reveals that using VSP instead of SSP was effective in reducing the energy costs of Vardavard’s WDN up to 5.43 percent.”

C27: Pag. 353, lines 26-28: check English language; A27: Pag. 353, lines 25-28: is checked and changed to: “Because many different parameters are highly correlated in WDNs, reliability analysis of WDNs is very complicated.”

C28: Pag. 354, lines 11-14: check English language; A28: Pag. 354, lines 11-14: is checked and revised; “On the other hand, inability of a system in providing the demanded water discharge with acceptable defined pressure is a hydraulic failure. The mechanical failures or increase in water demand are the source of this type of WDN’s failure (Tabesh, 1998).”

C31: Pag. 355, lines 9-12: check English language; A31: Pag. 355, lines 9-12: is checked and changed to: “In this research, reliability of pumping stations in WDNs is calculated through linking the optimization model in Visual Basic by simulation in EPANET2.0. In the simulation, the failure scenarios of pumps in pumping stations are considered.”
This paper demonstrates the technical analysis and comparison of the Reliability of Water Distribution Networks Due to Pumps Failure; contribute to the theme of this journal. It can provide the reference point for other researchers. Many thanks for your comments. Typing errors have been corrected in a new version.

General comments

This paper presents a methodology to evaluate the reliability of pumping stations and this topic is of interest for the Drinking Water Engineering and Science readers. The text is well organized but should be reviewed by someone whose mother tongue is the English. The reliability is here evaluated by using a sort of performance index, which authors call “fuzzy relationships”, that indirectly measures the amount of demand that can be fulfilled (in terms of available pressure at each node) in different failure scenarios, and each scenario corresponds to a pump(s) failure. Many thanks for your comments. Based on your advice, the paper has been reviewed by an English speaker and English errors are corrected in the new version.

Authors present three different equations to evaluate this reliability (although there is no justification for this choice): Eqs. (1) and (2) are “original” and Eq. (3) was taken from Tabesh and Zia (2003). In order to explain the comment about the assigned quantification and equations, I want to add the following statements: This paper is in continuation of the research which was conducted in 2011 and published in CCWI proceeding. In that research, the WDN was analyzed based on the first nodal pressure equation. In this paper, to reach the closest solution to the real condition of a WDN, the second nodal pressure equation is proposed to consider the maximum allowable nodal pressure. The difference between equation (1) and equation (2) is more visible in low daily consumption hours. In the next step, to promote the reliability calculation, the third nodal pressure equation, which is derived from Tabesh & Zia (2003), has been considered. The results of the three considered equations are compared. This comment is true to some extent. However, equation 1 is stated in this paper as a mean to be compared with other equations. It reveals that considering the maximum allowable nodal pressure has a significant role in calculating the network’s parameters. Eq. (2) is a simplistic way to envisage the performance of the system and the pumps in pumping stations are failed accordingly, spare pumps are working and satisfy the nodal demand. However, the nodal pressures lower than the minimum allowable pressure in WDN may occur more probably.”
of water distribution networks. But it makes some sense. A43: By considering the
maximum allowable nodal pressure and accordingly, decrease the reliability of the sys-
tem in equation #2, equation #1 is elevated to reach the closest solution to the real
condition of a WDN. C44: I think that Eq. (3) is from far the best as it is more close to
the performance that a water distribution network should present. The final value for
the reliability takes in consideration the probabilities assigned to each failure scenario.
A44: To promote the reliability calculation and more compliance with the real condition
of a network, the third nodal pressure equation, which is derived from Tabesh & Zia
(2003) has been considered. C45: However, authors don’t mention anything about the
values adopted for these probabilities. Although the presented methodology is inter-
esting, A45: It is discussed in C20. C46: it would be much more realistic to use a
Pressure Driven Demand model and evaluate directly the amount of demand that can
be fulfilled and evaluate the reliability with it. After reading the text I got the idea that the
proposed methodology assumes that the network is fed by one single pumping station,
which may contain several pumps. A46: Using the available demand driven software
of EPANET was the first step of this research. In the next phase, we aim to investigate
the reliability by means of the hydraulic analysis of a WDN based on pressure (HDSM),
which lacks in this research.

C47: I wonder if the authors thought how they would apply it to networks fed by more
than one pumping station. A47: This concept can be applied on WDNs with several
pumping stations. As an illustration, if there are two pumping stations (each with 3
parallel pumps), three scenarios are possible as follows. 1. Zero pump failure: all of
the pumps in the two pumping stations are working well and reliability of the network is
calculated according to this study. 2. One pump failure: one pump is failed in one of the
pumping stations. If pumps in both of the pumping station have identical characteristics,
this scenario may occur in both of the pumping stations with the same probability. In
the hydraulic analysis, failure of one pump is considered in both of the pumping stations
consequently and nodal pressures are calculated. The probability of failure in pumping
stations is different if pumps’ characteristics are different. 3. Two pumps failure: two
pumps are failed in one of the pumping stations or one pump in the first pumping station
and one pump in the second pumping station fail. If pumps’ characteristics differ in
the pumping stations, the probability of failure should be calculated differently in the
hydraulic analysis. All the possible scenarios are analyzed hydraulically and the nodal
pressures are calculated. It is noteworthy that by increasing the number of pumps and
pumping stations, the number of hydraulic analyses and complexity of the calculations
are increased, especially if the characteristics of pumps and the pumping stations are
not identical.

Specific comments C48: Some references have wrong names, like: “Tanyiemboh” and
“Goupta”. A48: It is revised in the new version.
C49: In Eq. (1) if HMIN is different from 0, when HAV=HMIN Coef is not 0. Is re-
ally this the authors intention? A49: In this research, because a hydraulic analysis is
conducted; therefore, in some cases, not only the nodal pressure lower than minimum
allowable pressure is possible, but also the negative pressure may occur. In the reli-
ability calculation, when this situation happens, the system is not reliable anymore and
the reliability of the system is zero. C50: Authors should be careful with the term “mini-
mum absolute standard pressure”, it may introduce some confusion between absolute
and relative pressures. A50:As it is stated, absolute minimum pressure is used in the
analysis of Networks.
C51: In Eq. (5) shouldn’t NP be equal to the number of different failure scenarios con-
sidered (it may be different from the number of pumps)? A51: The various scenarios,
from 0 pump failure to NP-1 pumps failure, are investigated. Therefore, NP scenarios
are the failure modes and the number of scenarios is equal to the number of pumps.
However, due to the fact that the number of pumping stations and the characteristics
of the pumps may differ, this comment seems very interesting and in the new version it
is applied. C52: In the case study, the operating points of the pumping station seems
somehow strange: with two pumps in parallel the discharge doubles (the system curve
is flat in this range – 0.0 to 1.4?). introduction of the third or the fourth pump gives the
same increase in the discharge (once again the system curve is flat in that range – 1.4 to 2.4?). But if we look at Figure 4, it seems that the operating points are: 1 pump – 0.7; 2 pumps – 1.3; 3 pumps – 1.9; 4 pumps – 2.3, and these seem to be more realistic.

C52: 1.4 is changed to 1.3 in the text.

C53: If there is no tank in the network, how is it fed? In Figure 3 we can see a reservoir. What is the physical meaning of this reservoir? The network feeding point has a constant head? A53: In this WDN, the pumping station pumps the water directly from the refinery to the system and there is no lost in the head. In the figure, reservoir is considered although in reality this is not the case. In general, in a perfect design, considering a tank is an important requirement which was not the case for this WDN.

C54: “In Table 2, the calculated negative reliabilities were replaced by 0.” Looking at Eqs. (1), (2) and (3) I don’t see how there can be negative reliabilities. Could the authors please explain this? A54: Yes, your comment is absolutely correct and it shouldn’t be negative. In the primary versions, because negative pressure restriction was not existed, negative reliabilities could be produced. In the final version, it is revised and this statement is deleted.

C55: “: : :the costs of the electricity consumption are 694.78 $ kw-1 and 597.75 $ kw-1 : : :”. What is the meaning of "$ kw-1"? If we are talking about costs shouldn’t it be just "$"? A55: The costs are in "Iranian Rial" which is revised in the new version.

Please also note the supplement to this comment:
http://www.drink-water-eng-sci-discuss.net/5/C239/2012/dwesd-5-C239-2012-supplement.pdf

Fig. 1. The comparison of reliability of two type of pumps (VSP, SSP), with weighted average of four scenarios using three nodal pressure equations.