Arsenic in drinking water: not just a problem for Bangladesh

D. van Halem1,2, S. A. Bakker1, G. L. Amy1,2, and J. C. van Dijk1

1Delft University of Technology, Faculty of Civil Engineering and Geosciences, Stevinweg 1, 2628 CN Delft, The Netherlands
2UNESCO-IHE, Westvest 7, 2611 AX Delft, The Netherlands

Received: 11 December 2008 – Accepted: 15 February 2009 – Published: 26 February 2009

Correspondence to: D. van Halem (d.vanhalem@tudelft.nl)

Published by Copernicus Publications on behalf of the Delft University of Technology.
Abstract

For more than a decade it has been known that shallow tube wells in Bangladesh are frequently contaminated with arsenic concentrations at a level that is harmful to human health. By now it is becoming clear that a disaster of an unheard magnitude is going on: the World Health Organization fears that in the near future 1 in every 10 adult deaths in Bangladesh will be caused by arsenic-related cancers. Other studies show that problems with arsenic in groundwater/drinking water occur in many more countries worldwide, such as in the USA and China. In Europe the focus on arsenic problems is confined to countries with high arsenic levels in their groundwater, such as Romania, Hungary and Italy. In most other European countries, the naturally occurring arsenic concentrations are lower than the drinking water standard of 10 µg L$^{-1}$. However, from the literature review presented in this paper, it may also be concluded that using the European standard, health risks cannot be excluded. It is therefore recommended that the current arsenic standard be reconsidered.

1 Introduction

The most well-known and severe case of arsenic poisoning through drinking water is going on in Bangladesh. Two-thirds of the tube wells installed over the last three decades, roughly three million in total, have been shown to contain arsenic concentrations above the permissible level set by the World Health Organization (BGS/DPHE, 2001). These wells were installed with the firm conviction that they would contribute to a secure and reliable drinking water supply, in order to put an end to various contagious diseases caused by the use of (unsafe) surface water. By itself, that goal has been reached. It is therefore a bitter observation that it is this very approach that has led to widespread arsenic poisoning of the drinking water. The scale of the problem is illustrated by the frequently used term “mass poisoning”. Concentrations as high as 1660 µg/l have been observed among the 8 to 12 million wells constructed...
(BGS/DPHE, 2001). Wells with arsenic concentrations above the national guideline of 50 µg/l are painted red; green wells contain concentrations lower than that. The large well-to-well variability in arsenic concentrations bears the consequence that in the villages all wells need to be tested. It is estimated that 37 to 77 million people are at risk of drinking arsenic-contaminated drinking water (WHO, 2001). The World Health Organization fears that in the near future 1 in every 10 adult deaths will be caused by arsenic-related cancers.

Although groundwater contamination with arsenic in Bangladesh has brought arsenic to our attention once again, the deadly career of arsenic started as early as 1778 when copper arsenate was discovered. The green dye coloured the wallpaper in 19th century living rooms, causing deaths, mainly among children. Around 1860 the medical journal The Lancet and newspaper The Times started a campaign against arsenic in wallpaper. The manufacturers denied all claims. It was not until 1890 that arsenic-containing wallpaper was taken out of production. Even earlier reports of arsenic poisoning date to Roman times; Nero had his half-brother poisoned with arsenic. Another well-known victim was Napoleon Bonaparte, but speculation on the cause of his death is still ongoing. The reason for arsenic's popularity as a poison was its effectiveness and the difficulty detecting it.

How is it that this notorious poison ended up in the groundwater of the Bengal Delta? Initially, it was assumed that the implementation of the shallow tube wells caused a lowering of the water table and, consequently, the oxidation of arsenic-bearing minerals. However, it did not take long for researchers to discover that arsenic mobilization was not caused by human actions. Deposited sediments from the Himalayas are the source of arsenic and strongly reducing conditions cause reductive dissolution of the arsenic-rich iron hydroxides (Smedley and Kinniburgh, 2002).
2 Arsenic in groundwater: a worldwide problem

The World Health Organization estimated in 2001 that about 130 million people worldwide are exposed to arsenic concentrations above 50 μg L⁻¹. Affected countries include Bangladesh (30 million exposed people), India (40 million), China (1.5 million) and the United States (2.5 million). The problem of arsenic-contaminated source waters is, however, not confined to these countries, as illustrated by the map in Fig. 1. According to WHO, arsenic poisoning is the second most important health hazard related to drinking water. Only contamination by pathogenic microorganisms has a bigger impact worldwide.

Arsenic contamination of groundwater has been found to occur due to geothermally-influenced groundwater, mineral dissolution (e.g., pyrite oxidation), desorption in the oxidising environment, and reductive desorption and dissolution (Smedley and Kinniburgh, 2002). Table 1 gives an overview of the arsenic concentrations worldwide. In the oxidising environment arsenic predominantly occurs as arsenate or arsenic(III), when reducing conditions prevail the dominant species is generally arsenite or arsenic(V). However, because of slow oxidation processes, both arsenite and arsenate may be found to co-occur.

Reductive dissolution of young arsenic-bearing sediments is the cause of the large-scale arsenic contamination of the strongly reducing aquifers in West Bengal. Also in China the strongly reducing conditions in the subsurface are the cause of arsenic mobilization. Concentrations up to 1800 μg L⁻¹ have been measured in Inner Mongolia, a northern province of China (Smedley et al., 2003). In Vietnam and Cambodia, arsenic concentrations were also observed to be high due to dissolution of young sediments (Buschmann et al., 2007, 2008). Arsenic mobilization caused by mineral dissolution has been found in active volcanic areas of Italy (Aiuppa et al., 2003) and inactive volcanic regions in Mexico (Armienta and Segovia, 2008). Volcanism in the Andes has lead to arsenic contamination of groundwater in Chile and Argentina (Smedley and Kinniburgh, 2002), but also mining activities have been found to contribute to arsenic
contamination in Latin American groundwater. Mining activities may cause the oxidation of sulphide minerals resulting in the release of arsenic into groundwater. Smedley and Kinniburgh (2002) listed cases of arsenic contamination caused by mining activities in Canada, Germany, Ghana, Greece, Mexico, South Africa, Thailand, UK, USA and Zimbabwe. Although the contamination has a severe impact on the environment, in these countries it often does not have an effect on the drinking water quality. In the past few years, more and more countries have found their waters to be affected by arsenic contamination due to mining wastes, e.g., Poland, Korea and Brazil (Marszalek and Wasik, 2000; Woo and Choi, 2001; Borba et al., 2003). More recently, groundwater in Burkino Faso was measured to be contaminated by arsenic, up to 1630 µg/L (Smedley et al., 2007).

3 How poisonous is arsenic?

Arsenic is extremely poisonous. IARC (International Agency for Research on Cancer, 2004) has classified arsenic as a human carcinogenic substance, group 1. Long-term intake of drinking water with elevated arsenic concentrations can cause the development of arsenicosis, the collective term for diseases caused by chronic exposure to arsenic. It includes several kinds of skin lesions and cancers, like hyper-pigmentation, hyperkeratosis, gangrene, skin cancer, lung cancer and bladder cancer (WHO, 2006). Hyper-pigmentation, an excess of skin pigmentation, is most often the first visible symptom. There is also strong evidence that chronic arsenic intake is related to cardiovascular diseases. Other health effects such as infertility and retarded development in children are also linked to arsenic poisoning, but the evidence is not yet convincing (WHO, 2001). In areas with elevated arsenic concentrations in the environment, the exposure is not solely confined to drinking water. Arsenic (organic and inorganic) is also found in a wide range of food products, like fish, meat and rice. Intake through air may also be significant, especially close to industrial sources.
The World Health Organization has published an overview document on the toxicology of and legislation for arsenic in drinking water (WHO, 2003). They conclude that the maximum likelihood “for bladder and lung cancer for US populations exposed to 10 µg of arsenic per litre in drinking water are, respectively, 12 and 18 per 10,000 population for females and 23 and 14 per 10,000 population for males”. The WHO has a general rule that no substance may have a higher lifetime risk of more than 1 in 100,000. Purely based on health effects, the WHO guideline of 10 µg L\(^{-1}\) would, in that respect, not suffice. The main reason to maintain this guideline is, therefore, merely practical and not health related. The US Environmental Agency (EPA) and the US Natural Resources Defense Council (NRDC, 2000) even recommend arsenic guidelines below 1 µg L\(^{-1}\) to attain an acceptable lifetime cancer risk. Table 2 gives an overview of the linear risk extrapolation regarding arsenic consumption through drinking water by the EPA and NRDC. It is noteworthy that EPA considered life-time skin cancer risk only and did not include arsenic intake through food due to a lack of reliable data. The consumption of arsenic through food could overestimate the current risk calculations and EPA indicates a possible uncertainty of one order of magnitude. Although the uncertainties concerning the health risks of arsenic in drinking water are undeniable, it is clear that extremely low concentrations are desirable to avoid these potential risks.

4 Arsenic not a problem in Europe?

The European guideline for arsenic in drinking water is in accordance with the WHO guideline of 10 µg L\(^{-1}\) (EU, 1998; WHO, 2006). In their background document, the WHO states that the 10 µg L\(^{-1}\) guideline is based on practical considerations (detection limit and feasibility/cost of arsenic removal) instead of the health effects. Arsenic in drinking water supply has never been a matter of interest in most European countries because the standard of 10 µg L\(^{-1}\) is hardly ever exceeded. Nevertheless, in countries such as Romania, Hungary, Italy and Spain, elevated arsenic concentrations have been detected and special treatment steps are needed to reduce the arsenic to acceptable
Considering the previously provided information regarding the health effects of arsenic consumption, it would be wise to reconsider the current guideline. In Europe, drinking water standards are generally based upon a risk level of 10^{-6}. In that case, according to the Environmental Protection Agency, the guideline should be as low as 0.02 µg L$^{-1}$. It is noteworthy that the WHO and EPA do not provide information on whether inorganic arsenic is genotoxic or non-genotoxic, because current epidemiologic studies are inadequate for that. In their background documents, these organisations describe the cancer risks based on both approaches. All the same, the current WHO guideline is not based on this risk assessment, but on practical considerations.

Some countries have adopted stricter arsenic guidelines for drinking water than the current WHO guideline. In Denmark, the national guideline has already been lowered to 5 µg L$^{-1}$ (Danish Ministry of the Environment, 2007), as well as in the American state of New Jersey (NJDEP, 2004). In addition, the American Natural Resources Defense Council (2000) advises that the drinking water standard be set at 3 µg L$^{-1}$. Australia has a drinking water guideline for arsenic of 7 µg L$^{-1}$ (National Health and Medical Research Council, 1996).

Based on the health considerations presented here, it is evident that arsenic deserves more attention in the European drinking water supply sector. Also in countries that do not cope with serious arsenic contamination of their groundwater, the health risk of arsenic in drinking water may not be neglected. The aim should be to optimize drinking water treatment for arsenic removal to concentrations below <1 µg L$^{-1}$, which is technically feasible, especially in countries with low to moderate arsenic concentrations in their water sources (Box 1).
Box 1. Arsenic removal from drinking water.

In surface- and groundwater, arsenic predominantly occurs as arsenite and arsenate. The reducing species, three-valent arsenic (arsenite), occurs mainly in anaerobic groundwater, because the presence of oxygen oxidizes arsenite to five-valent arsenic (arsenate). Both species are present in water as dissolved anions and removal with drinking water treatment is not straightforward. Around neutral pH arsenite (H$_3$AsO$_3$) is uncharged and therefore difficult to remove with processes that rely on surface charge (ion exchange, iron hydroxide adsorption). Arsenate (HAsO$_4^{2-}$) can be more easily removed because it is negatively charged and behaves in water more or less analogous to phosphate and is, therefore, relatively easily incorporated into the iron hydroxide matrix during iron removal. To remove arsenite from the water, pre-oxidation to arsenate is required. Arsenate can be removed with processes like ion exchange and membrane filtration, but these processes are expensive and have their well-known disadvantages, like the production of brine. Internationally, a lot of attention is being given to the development of technologies based on the co-precipitation of arsenite and arsenate in flocs during coagulation (e.g., iron hydroxides) and arsenic adsorption to media, like activated alumina and granular iron oxide/hydroxide. In all cases the arsenic binds to the positively-charged surface of the (iron hydroxide) matrix. Especially at low to moderate arsenic concentrations, the technology of arsenic adsorption is relatively effective. A new approach to remove arsenic from groundwater is by retention in the subsurface, because during in-situ or subsurface iron removal, arsenic levels are also reduced (Rott and Meyer, 2002; van Halem et al., 2008). At many groundwater treatment plants in Europe, incidental co-precipitation of arsenite and arsenate occurs during iron removal. In general, the effectiveness depends on the Fe/As-ratio, pH, redox potential and process conditions such as contact time, filtration rate and medium. Optimization studies to improve arsenic removal during iron removal are still limited in Europe. It is, however, expected that arsenic removal will be improved once iron removal processes are optimized.
5 Conclusions

The “mass poisoning” by arsenic contamination of groundwater in Bangladesh illustrates the severe consequences of chronic arsenic consumption through drinking water. In Europe arsenic concentrations are below the WHO and EU guideline of 10 µg L\(^{-1}\), but this does not mean that all health risks have been ruled out. The drinking water in Europe is expected to be of impeccable quality and it is therefore recommended that the current arsenic standard be reconsidered. Additionally, research is needed to investigate the desired arsenic standard and to optimize arsenic removal at existing water supply plants.

References

National Health and Medical Research Centre: Australian drinking water guidelines – Summary, Australian Water and Wastewater Association, Artamon, 1996.

Woo, N. C. and Choi, M. C.: Arsenic and metal contamination of water resources from mining
Table 1. Arsenic occurrence (WHO, 2001).

<table>
<thead>
<tr>
<th>Source of arsenic</th>
<th>Arsenic concentration (µg L(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic-rich sediments (e.g., Bangladesh, Vietnam, China)</td>
<td>10–5000</td>
</tr>
<tr>
<td>Groundwater contaminated by mining activities (e.g., Ghana)</td>
<td>50–5000</td>
</tr>
<tr>
<td>Geothermal influenced water (e.g., USA, Argentina)</td>
<td><10–50 000</td>
</tr>
</tbody>
</table>
Table 2. Lifetime cancer risk estimates as a result of exposure to arsenic in drinking water.

<table>
<thead>
<tr>
<th>Lifetime cancer risk</th>
<th>Arsenic concentration (μg L$^{-1}$)</th>
<th>EPA/IRIS (1998)</th>
<th>NRDC (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-2} (1 in 100)</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>10^{-3} (1 in 1000)</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10^{-4} (1 in 10 000)</td>
<td></td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>10^{-5} (1 in 100 000)</td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>10^{-6} (1 in 1 000 000)</td>
<td></td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. Arsenic-affected countries (red) of the world (Smedley and Kinniburgh, 2002; Appleyard et al., 2006; Smedley et al., 2007).